Suborbital Vehicles

Chuck Lillie June 25, 2015

Definitions

- Sub-orbital Vehicles
 - Elliptical orbits with apogee >100 km, perigee < 0 km
 - Delta-V > 1.1km/sec, < 7.7 km/se
- Coast to peak altitude after rocket engine burnout
- Peaks altitude and downrange impact distance increases with Delta-V

Isaac Newton's Cannonball. Paths A and B depict a sub orbital trajectory. Paths C and D are orbital trajectories, and path E is an escape trajectory.

Available Vehicles

- Balloons up to 40 km
 - Standard 5 days
 - Ultra long Duration 50+ days
- Sub-orbital Aircraft -` 110 km
 - X-15– 5 minutes
 - Space Ship 2 5 minutes
 - XCOR 5 minutes
- Sounding Rocket 100 TO 1500 km
 - Black Brandt X, XII 5 to 6 minutes
 - Terrier MK70-Improved Orion
- Space Planes 300 to 800 km (?)
 - X-37B

Advantages

- Relatively low cost
- Rapid response
- New Technology demonstration and maturation
 - Instrument architectures, detectors, coatings, optics, gratings, etc
- Training for future investigators
 - Graduate student experiments, thesis data
- Focused, cutting-edge science investigations
- Payload recover, modification, reuse
- In-situ observations at sub-orbital altitudes
- Downside = limited observing time at altitudes > 40 km

Black Brandt X

- Three Stage vehicle
 - third stage motor is ignited once the vehicle system reaches exoatmospheric conditions
 - The standard payload
 configuration for the Black Brant X
 vehicle is 17.26 inches in diameter
 with a 3:1 ogive nose shape.
 Payload length and weight limits
 for the Black Brant X are not
 defined as they are for the Black
 Brant V and specific limitations for
 this system are determined as the
 situation warrants.

Figure F.4-2: Black Brant X Launch Vehicle Performance